Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis.

نویسندگان

  • Y Mizukami
  • R L Fischer
چکیده

The control of cell proliferation during organogenesis plays an important role in initiation, growth, and acquisition of the intrinsic size of organs in higher plants. To understand the developmental mechanism that controls intrinsic organ size by regulating the number and extent of cell division during organogenesis, we examined the function of the Arabidopsis regulatory gene AINTEGUMENATA (ANT). Previous observations revealed that ANT regulates cell division in integuments during ovule development and is necessary for floral organ growth. Here we show that ANT controls plant organ cell number and organ size throughout shoot development. Loss of ANT function reduces the size of all lateral shoot organs by decreasing cell number. Conversely, gain of ANT function, via ectopic expression of a 35S::ANT transgene, enlarges embryonic and all shoot organs without altering superficial morphology by increasing cell number in both Arabidopsis and tobacco plants. This hyperplasia results from an extended period of cell proliferation and organ growth. Furthermore, cells ectopically expressing ANT in fully differentiated organs exhibit neoplastic activity by producing calli and adventitious roots and shoots. Based on these results, we propose that ANT regulates cell proliferation and organ growth by maintaining the meristematic competence of cells during organogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern formation and growth during floral organogenesis: HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana.

Our understanding of the molecular mechanisms that regulate and integrate the temporal and spatial control of cell proliferation during organ ontogenesis, particularly of floral organs, continues to be primitive. The ovule, the progenitor of the seed, of Arabidopsis thaliana has been used to develop an effective model system for the analysis of plant organogenesis. A typical feature of a genera...

متن کامل

The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size.

During plant development, the final size of an organ is regulated and determined by various developmental signals; however, the molecular mechanisms by which these signals are transduced and the mediators involved are largely unknown. Here, we show that ARGOS, a novel Arabidopsis gene that is highly induced by auxin, is involved in organ size control. Transgenic plants expressing sense or antis...

متن کامل

AINTEGUMENTA and the D-type cyclin CYCD3;1 independently contribute to petal size control in Arabidopsis: evidence for organ size compensation being an emergent rather than a determined property

Plant lateral aerial organ (LAO) growth is determined by the number and size of cells comprising the organ. Genetic alteration of one parameter is often accompanied by changes in the other, such that the overall effect on final LAO size is minimized, suggested to be caused by an active organ level 'compensation mechanism'. For example, the aintegumenta (ant) mutant exhibits reduced cell number ...

متن کامل

Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs.

AINTEGUMENTA (ANT) was previously shown to be involved in floral organ initiation and growth in Arabidopsis. ant flowers have fewer and smaller floral organs and possess ovules that lack integuments and a functional embryo sac. The present work shows that young floral meristems of ant plants are smaller than those in wild type. Failure to initiate the full number of organ primordia in ant flowe...

متن کامل

Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL.

• The growth of a plant organ to its characteristic size is regulated by an elaborate developmental program involving both internal and external signals. Here, we identify a novel Arabidopsis gene, ORGAN SIZE RELATED1 (OSR1), that is involved in regulation of organ growth and overall organ size. • A combination of genetic, cytological and molecular approaches was used to characterize the expres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 2  شماره 

صفحات  -

تاریخ انتشار 2000